
Extended Abstract

Motivation Natural language to SQL (NL2SQL) systems are increasingly important for enabling
users to efficiently query structured databases without the need to write formal code. Recent work
has turned to reinforcement learning to improve accuracy and reasoning capabilities. While Direct
Preference Optimization (DPO) sidesteps the challenges posed by reward learning approaches by
learning directly from preference pairs, its performance is sensitive to the quality of the synthetic
preference dataset. We aim to fill a gap in the literature by exploring approaches to generating
synthetic preference pairs for NL2SQL, as well as multi-objective approaches to improve DPO
training in the absence of high-quality preference data.

Method We employ two strategies for generating preference datasets. Firstly, LLM vs. Ground
Truth, where a generated incorrect SQL query is marked as dispreferred and the corresponding gold
query as preferred. Secondly, LLM vs. Reasoning-Assisted LLM, where preference pairs are formed
by re-prompting the incorrect LLM with only the gold chain-of-thought (CoT) trace to produce a
new SQL output (preferred) and comparing it to the original, unassisted generation (dispreferred).
We only use samples where the model failed without the CoT assist and succeeded with it. We train
models using both single-objective DPO and the first dataset with a multi-objective variant that adds
an auxiliary loss to encourage learning based on SQL syntax patterns.

Implementation We use OmniSQL-7B, a Qwen2.5-Coder-7B model fine-tuned on the SynSQL-
2.5M dataset, as our base model. Evaluation is conducted on 200 “complex” examples from the
SynSQL test set and 145 from the BIRD development benchmark. Gold labels for DPO training
come from the SynSQL-2.5M dataset. Evaluation is based on execution accuracy: the percentage of
queries whose execution outputs match those of the gold query.

Results

• Single-objective DPO on LLM vs. GT improved SynSQL accuracy from 71.5 percent to
74.5 percent.

• Single-objective DPO on CoT-assisted outputs slightly reduced performance to 71.0 percent
on SynSQL, suggesting that reasoning-augmented outputs that did not necessarily match the
gold final SQL were ineffective.

• Multi-objective DPO on LLM vs. GT further improved accuracy to 80.0% on SynSQL and
from 15.86% to 17.24% on BIRD, demonstrating ability to compensate for limitations in
preference data quality.

Discussion Our results validate DPO’s utility for NL2SQL, and highlight the usefulness of multi-
objective approaches. Small evaluation set sizes limited statistical confidence, especially on BIRD.
Our binary metric (execution match) may not fully capture partial correctness or improvements in
reasoning. Our results may be limited by generated preference pairs that are too easy to discern. For
multi-objective optimization, the score disagreed with the “chosen > rejected” assertion 13% of the
time, which may suggest tha the score function and DPO dataset are robust, or that the DPO dataset
has too much of a difference between preferred and rejected, such that the score is not resulting in
enough information gain.

Conclusion We find that multi-objective DPO in particular can significantly enhance LLM perfor-
mance on NL2SQL tasks. Single-objective DPO generated from preference pairs consisting of an
incorrect fine-tuned model output and a gold label are also effective, although generating preferred
outputs only by including gold CoT traces did not improve performance. These results emphasize
the value of robust approaches to generating synthetic preference data and augmenting it with richer
multi-objective preference optimization, as well as provides a foundation for further general-purpose
DPO improvements across other domains.
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Abstract

Natural-language-to-SQL semantic parsing (NL2SQL) enables users to interact
intuitively with structured databases. The most recent approaches aim to improve
LLM NL2SQL performance by using Direct Preference Optimization (DPO), but
may not synthesize sufficiently high-quality preference training datasets that offer
expressive and granular contrastive signals. In this work, we explore three methods
for improving DPO for NL2SQL: (1) constructing preference pairs from incorrect
model generations and gold outputs, and (2) re-prompting the model with gold
chain-of-thought (CoT) traces to generate improved SQL for use as preferred exam-
ples, (3) a multi-objective variant of DPO for NL2SQL that augments preference
optimization with rule-based scoring. We evaluate against the SynSQL and BIRD
benchmarks, finding that multi-objective DPO achieves modest improvements over
standard DPO and supervised fine-tuning, while training on preference pairs con-
structed from incorrect model generations improve model performance compared
to only using supervised fine-tuning. Our findings highlight the importance of both
dataset quality and including additional objectives in DPO for NL2SQL and other
preference-based alignment objectives under preference dataset constraints more
generally.

1 Introduction

Converting natural language questions into SQL queries (NL2SQL) is a useful tool in bridging the
gap between human communication and structured data systems. For example, natural language to
SQL parsing can be particularly useful in allowing non-technical users to efficiently query complex
structured databases without specialized knowledge of programming or SQL, or as a means for
augmenting information retrieval systems such as RAG with the capability to retrieve from structured
table schemas rather than solely unstructured text corpora. While recent advancements LLMs have
dramatically improved NL2SQL semantic parsing capabilities, significant challenges remain in
accuracy and robustness. Prior work, discussed below, has used reinforcement learning to improve
LLM NL2SQL capabilities by training on a reward function composed of factors such as syntactical
correctness, executability, result correctness, and length Peixian Ma12 (2025). However, this paradigm
has notable limitations - execution accuracy is sparse and noisy; syntactically correct but semantically
incorrect queries may still achieve high reward; relying on an exact match does not account for the
diversity of correct SQL formulations for a given intent, penalizing semantically correct alternatives
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Renggli et al. (2025). Moreover, these reward models often fail to reward queries that apply the
correct reasoning of how to compose the query or understanding of the underlying database if
the final output does not match the gold label, limiting its usefulness in tuning models’ ability to
construct complex queries, such as those involving multi-table joins. To address these issues, recent
work has turned to Direct Preference Optimization (DPO), which bypasses this reward modeling
stage and directly optimizes a model to prefer certain outputs over others, allowing the model to
learn more diverse and generalized signals that are difficult to capture through reward modeling.
DPO approaches, however, face a new constraint: constructing a preference dataset. In the absence
of human-labeled preferences, DPO for NL2SQL must construct a synthetic dataset consisting of
preference pairs. Prior work has relied on sampling an LLM multiple times and selecting outputs
matching the training set ground truth as ‘preferred’ and otherwise ‘rejected’ Wu (2024). However,
methods for constructing effective preference datasets using LLM self-refinement are underexplored,
as are means to augment the DPO algorithm to replace the expressiveness or diversity that may
be lost in such LLM-generated preference dataset approaches. In this work, we aim to bridge this
gap by testing two approaches for improving DPO for NL2SQL tasks. More broadly, generating
high-quality preference data is an open problem that extends beyond NL2SQL to nearly all domains
employing DPO for LLM alignment, be it in code generation, document summarization, or dialogue
systems. Synthetic preference data must express the breadth of qualities that make an output ‘correct’,
while also capturing nuanced distinctions between near-correct and subtly flawed outputs in order
to drive meaningful improvements. Hence, this work can serve as a springboard for future work
developing more general, domain-agnostic techniques for synthesizing preference for DPO training,
and augmenting DPO loss with domain-specific auxiliary losses.

2 Related Work

OmniSQL Haoyang Li (2025): The contributions of this paper are two-fold: first, the creators of this
paper designed and implemented a framework for the generation of the first million-scale synthetic
dataset of NL2SQL examples. They then used it to finetune Qwen2.5-Coder using supervised
finetuning. OmniSQL, the resulting model, improves upon its base model: under the greedy decoding
strategy, OmniSQL-7B achieves an average improvement of +8.4% (from 52.8% to 61.2%) over its
base model, Qwen2.5-Coder-7B-Instruct. Additionally, it teaches the model to follow the output
format instructed by the prompt. For these reasons, we chose to use OmniSQL as our base model for
our experiments. We reuse OmniSQL’s proposed prompt in our training as well, which can be found
in their paper.

SQL-R1 Peixian Ma12 (2025): We will draw inspiration from a paper that came out recently titled
“SQL-R1: Training Natural Language to SQL Reasoning Model By Reinforcement Learning.” This
paper introduces an RL-based methodology to fine-tune an LLM by for NL2SQL tasks. They claim
that RL enhances the model’s ability to reason through SQL query generation and generalizability
to databases that differ from the ones it was trained on. Like OmniSQL, this methodology uses the
Qwen2.5-Coder-7B-Instruct foundation model and the dataset SynSQL-2.5M, where each sample
consists of a quadruple comprising a database, a natural language question, an SQL query, and a
chain-of-thought (CoT) solution. The methodology uses SFT as its cold start, then applies the Group
Relative Policy Optimization (GRPO) algorithm with a custom reward function that comes from
evaluating the generated SQL itself instead of human feedback.

We would like to use a different RL algorithm in our methodology: Direct Preference Optimization
(DPO). In this approach, the reward modeling is done offline during the dataset preparation, where
two outputs are generated for each sample and one is labeled as the preferred output. This would
make training more efficient, since we don’t need to apply the reward model to the outputs during
training.

We found two existing solutions that use DPO for NL2SQL finetuning. The first is DataGpt-SQL Wu
(2024), which uses CodeQwen1.5-7B-Chat as its base model and constructs the preference dataset
by running inference using the finetuned model on a training set of SQL queries multiple times
each, and selecting "chosen" and "rejected" samples based on execution accuracy. This approach
showed promising results, as the execution accuracy on the evaluation set rose approximately 20
percent points above the accuracy of the base model: 65.0 to 84.8%. Another solution we found was
called ExCoT Bohan Zhai (2025), which differed from DataGpt-SQL in that it trained on reasoning
traces in addition to the queries themselves. It also only used execution feedback for preference pair
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generation, but used GPT-4o as well as the finetuned base model to generate preference pairs. ExCoT
improved on its base model from 57.37% to 68.51% on the BIRD dataset.

3 Method

Ground-truth data: Our experiments use the gold SQL query from the SynSQL-2.5M dataset,
which contains 2.5 million samples spanning over 16,000 synthetic databases across a wide range
of domains. Each sample includes a database, SQL query, natural language question, and chain-of-
thought (CoT) solution. The size of the first preference dataset used for training is 1676 preference
pairs and the size of the second dataset used for training is 742 preference pairs.

Model: For all our experiments, we apply DPO on OmniSQL-7B, which is Qwen2.5-Coder-7B
fine-tuned on SynSQL-2.5M Haoyang Li (2025). We use this model as our baseline.

Evaluation data: We evaluate on two datasets: (1) 200 questions tagged as ‘complex’ from the
SynSQL-2.5M test set (2) 145 questions tagged as ‘complex’ from the BIRD dev set, a popular
benchmark for text-2-SQL evaluation. Our evaluation metric is the percentage of test queries whose
outputs, when executed, match the gold SQL output.

We employ 2 strategies for preference dataset generation:

1. LLM vs. Ground Truth: Prompt OmniSQL-7B to generate SQL for a natural language
question. Compare the generated SQL’s execution output to the gold (ground truth) SQL
output. If the outputs differ, use the gold SQL as the preferred response and the LLM-
generated incorrect SQL as the dispreferred response.

2. LLM vs. Reasoning-Assisted LLM: For incorrect initial outputs, re-prompt the LLM using
the gold chain-of-thought (CoT) trace as additional context (but not the gold SQL). If the
model now produces a correct SQL query, use this CoT-assisted output as the preferred
response. The original incorrect SQL remains the dispreferred response.

Furthermore, we apply two optimization algorithms using these datasets:

1. Single-objective DPO, which has the loss function define below Rafailov et al. (2024). We
refer the reader to the original DPO paper for detailed derivation.

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)]
Where x represents the NL input, yw and yl represent the preferred and rejected SQL outputs
respectively, πθ and πref are the current and base LLMs, D is the preference dataset, and β
is a temperature-like scaling hyperparameter.

2. Multi-objective DPO, which is the DPO loss, plus a weighted term that serves as a
score of the SQL query. Specifically, it checks if the SQL query can be parsed, and if
it follows common patterns/anti-patterns of well-written SQL. The loss function is defined as:

LDPO + λ · Lrule

Where Lrule is defined as:

Lrule = isParsed · (−0.2 · 1has SELECT * + 0.1 · 1has WHERE clause + · · · )

where isParsed is 0 or 1

The hypothesis with the multi-objective DPO is that without a reward model, DPO cannot learn the
syntax of SQL well, so we add a support that entails both parseability and best practices. Specifically,
the score is immediately zero if the SQL does not parse. If it does, then it starts with a 1.0, and can
earn or lose points depending on patterns and anti-patterns. For example, the use of “SELECT *”
is oftentimes unideal in SQL, so it is penalized. In future experiments, it would be better to assign
partial credit to SQL that doesn’t parse, for the same reason that Hindsight Efficiency Replay helps
so much in RL.

From this, we formulate three hypotheses that our research aims to answer:
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1. Applying single-objective DPO using preference dataset 1 (LLM vs. ground truth) will
improve model performance on the SynSQL and BIRD test set compared to the base
fine-tuned OmniSQL-7B.

2. Applying single-objective DPO using preference dataset 2 (LLM vs. reasoning-assisted
LLM) will improve model performance on the SynSQL test set compared to the base
fine-tuned OmniSQL-7B, but less than dataset 1.

3. Applying multi-objective DPO on preference dataset 1 will improve model performance
compared to single-objective DPO on preference dataset 1 and the base fine-tuned OmniSQL-
7B.

Due to computational constraints, our training data size is limited, and we did not apply multi-
objective DPO on preference dataset 2 nor did we evaluate hypothesis 2 against BIRD (only the
SynSQL test set).

4 Experimental Setup

We used Colab Pro in order to access the A100 GPU, since faster inference times were required for
preference dataset construction. This was especially important since we were generating preference
pairs using a (close to) state-of-the-art model for NL2SQL; it answered correctly on at least 70
percent of queries, so we couldn’t use them for our "rejected" samples. However, Elizabeth used
the g5.2xlarge EC2 instance on AWS with a A10G GPU for basic DPO training, and Bora used the
g6.2xlarge EC2 instance with an L4 GPU for DPO and multi-objective optimization training. The
memory limitation required quantization and low batch sizes, which could have been alleviated with
larger and more costly instances.

5 Results

Model Evaluation Accuracy (%) on SynSQL-2.5M test set
Omni-SQL-7B 71.5
Basic DPO fine-tune using preference dataset 1 74.5
Basic DPO fine-tune using preference dataset 2 71.0
Multi-objective optimization using preference dataset 1 80.0

Table 1: Evaluation accuracy of different models on the SynSQL-2.5M complex test set.

Model Evaluation Accuracy (%) on BIRD dev test set
Omni-SQL-7B 15.86 (23 correct)
Basic DPO fine-tune using preference dataset 1 15.68 (23 correct)
Multi-objective optimization using preference dataset 1 17.24 (25 correct)

Table 2: Evaluation accuracy of different models on the BIRD complex development test set.

We analyze these results with respect to our 3 hypotheses in turn:

H1: Fine-tuning on preference dataset 1 (LLM vs ground-truth) does improve performance on the
SynSQL test set (by 3 percent or 6 more correct examples out of 200), but remains the same on BIRD
(both at 15.86 percent or 23/145 test examples) compared to the base supervised-fine-tuned OmniSQL-
7B. We intuitively expected performance to improve on both datasets for the same reasons that DPO
is broadly effective in tuning models - preference-based supervision captures finer distinctions than
maximum-likelihood approaches that OmniSQL fine-tuning could, and teaches a model to avoid
common mistakes or shortcomings that may be observed in the dispreferred examples. It is likely
that the lack of improvement on the BIRD dataset is primarily noise given the small test set size, but
there are plausible reasons for why the model may structurally perform worse on BIRD. Namely,
the preference dataset was constructed entirely from SynSQL examples and while the test-set was
held out, BIRD examples are generally more complex, so the BIRD benchmark is somewhat out of
distribution relative to the test set of the same dataset it was trained on. We discuss further reasons for
why we may not be observing as much of an improvement in performance in the discussion section.
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H2: Fine-tuning on preference dataset 2 (LLM vs. reasoning-assisted LLM) did not improve
performance on the SynSQL-2.5M test set relative to the base supervised-fine-tuned OmniSQL-7B.
The fine-tuned model achieved a 71.5 percent accuracy, whereas applying DPO on top of this using
dataset 2 dropped accuracy to 71.0 percent (by one less correct example). We expected an increase
from the base supervised-fine-tuned model as re-prompting the model with correct reasoning should
in theory always yield a more-preferred output with more robust underlying logic, allowing the model
to explicitly learn to improve its underlying reasoning. Additionally, we expected this approach
to correct the discrepancy in style between the chosen and rejected samples in the first preference
dataset, since both samples in the pair are constructed as outputs from the same model. The observed
results, however, can likely be explained by 1) lack of sufficient samples and 2) lack of distinguishing
features between the correct and incorrect samples. The complexity of questions may be such that
the chosen and rejected samples are too difficult to distinguish between.

H3: Applying multi-objective DPO using preference dataset 1 leads to a substantial improvement in
performance on both the SynSQL and BIRD test sets relative to both the base supervised-fine-tuned
OmniSQL-7B and the single-objective DPO baseline trained on the same dataset. On SynSQL, the
accuracy increases from 71.5 percent (OmniSQL-7B) and 74.5 percent (single-objective DPO) to
80.0 percent. Similarly, on BIRD, performance improves from 15.86 percent (23/145) to 17.24
percent (25/145), again a meaningful gain. This is in line with our expectations as multi-objective
optimization provides a more effective learning signal than standard DPO by incorporating additional
rule-based supervision to guide how the model learns from preferences. This is particularly important
as computational constraints limited our training set size and LLM-generated preference datasets are
inherently noisy, meaning an additional objective that explicitly defines important heuristics can add
much-needed expressiveness to the standard DPO algorithm in this domain. For example, even if a
SQL query had better semantics compared to another one, it would do more poorly on benchmarks
if the syntax were incorrect. Since a reward model would have many parameters, it is presumable
that syntax rules would emerge as a latent factor. However, in a model-free approach like DPO, it
would not be possible to represent as much information, and the syntactical correctness could be
sacrificed, leading to poor performance on tasks like benchmarks where the SQL needs to be correct.
The additional score term restores the importance of syntax to the objective.

Figure 1: Training loss curves of DPO-only, preference set 1. Margins between chosen and rejected
rewards are steadily growing.

Figure 2: Training loss curves of DPO-only, preference set 2. Margins between chosen and rejected
rewards shot up quickly but then began to fluctuate.
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5.1 Quantitative Evaluation

While our experiments show promising gains using multi-objective DPO for NL2SQL, several
limitations constrain the strength and generalizability of our conclusions.

First, we observed that our DPO loss dropped very quickly during training using the first preference
pair dataset, suggesting that the discrepancy between chosen and rejected pairs was too obvious (see
Figure 2). This may have been due to stylistic differences, such as output length. In the first preference
dataset, where we used OmniSQL-generated outputs for rejected samples and SynSQL "gold" outputs
as chosen samples, the average length of the chosen samples was 3304.1 characters, whereas the
average length of the rejected samples was 1510.6 characters. On the other hand, differences between
chosen and rejected samples in the second preference pair dataset may have been too difficult to
distinguish, as demonstrated by the unstable loss curves (see Figure 3).

Second, our evaluation was limited by the relatively small effective size of the test sets. Despite
initially selecting more questions from SynSQL and BIRD respectively, a subset of model outputs
failed to generate syntactically valid SQL tags, requiring us to discard them from the evaluation. This
reduced statistical power and introduced further noise, particularly on BIRD, where performance
differences between models were subtle.

Third, our evaluation metric—exact match of execution outputs—is a sparse and binary signal that
may under-represent partial correctness or overlook close, but still incorrect agent SQL. While
the metric we used (percentage of exact output matches) aligns with prior NL2SQL work and the
BIRD benchmark standard, it does not capture more granular forms of model improvement, such as
generating a query that selects the correct projections and filters, but expresses the filter by matching
a column to a slightly incorrect string. Alternative metrics, such as token-level F1 scores or execution
similarity over sampled inputs, could offer more nuanced and robust signals for both evaluation and
preference generation.

More broadly, this work highlights the importance of the quality of synthetic preference dataset
and multi-objective optimization in light of the limitations of such datasets. Given this, there are
several promising directions for future research. One opportunity is to combine DPO with interactive
prompting strategies such as ReAct Yao et al. (2023), which iteratively refines model outputs by
showing intermediate reasoning steps and execution feedback. This could help guide preference
modeling toward more realistic and constructive corrections; a better execution of the idea behind
preference dataset 2 to teach the model to prefer better reasoning/logic. Another direction is to
revisit how structured schema information is represented to LLMs; most NL2SQL pipelines simply
provide schema metadata via CREATE TABLE syntax, but this may be suboptimal relative to richer
intermediate representations—such as relation graphs or type-annotated structures—that may improve
the model’s ability to reason about relational dependencies and table joins before even generating
SQL. Finally, further research into other ways to formulate multi-objective DPO for NL2SQL (namely,
alternative scoring functions, or how performance gains from multi-objective may vary depending on
the size and quality of the generated preference dataset) would be important to better understand how
different preference dataset generation approaches and multi-objective approaches may combine to
best overcome training data constraints in DPO.

5.2 Qualitative Analysis

In this work, we explored the use of Direct Preference Optimization (DPO) to improve large language
model performance on NL2SQL tasks. Our experiments demonstrate that preference-based fine-
tuning using multi-objective DPO can lead to substantial improvements over both supervised fine-
tuning and standard single-objective DPO—achieving a 6.5% absolute gain on the SynSQL test set
and modest improvements on the BIRD benchmark. While constructing synthetic preference pairs
around incorrect LLM outputs and ground-truth labels is an effective approach, we find that doing so
by re-prompting LLMs with gold CoT traces to create gold reasoning-assisted SQL outputs is not
effective in improving model performance. Our findings also underscore key limitations: noisy and
sometimes trivial preference pairs reduced the effectiveness of contrastive learning, small test sets
limited our statistical confidence, and sparse binary evaluation metrics may obscure more nuanced
improvements. Despite these constraints, our results offer compelling evidence that augmenting DPO
with additional domain-informed objectives while improving the construction of preference datasets
are promising directions for advancing robust and accurate NL2SQL systems.

6



Figure 3: DPO Loss, which becomes almost zero. It starts at an even 50-50, and gains almost full
accuracy at discerning chosen from rejected, suggesting that the choice may be too obvious and the
value-add from the data may be limited.

6 Discussion

Overall, with NL2SQL problems, we realize that DPO is a viable replacement of the reward model,
but that it makes some lateral sacrifices. Namely, adding syntax-based parsing to the DPO objective
improves performance both on validation data and NL2SQL benchmarks. With more time and
compute, it would be interesting to validate the hypothesis that the additional term in the objective
would not help for a reward model because the syntax would already be a latent factor.

The DPO data generation process may have generated preference data that is too easy to discern. We
make this claim because the DPO loss became incredibly low, suggesting almost-perfect ability to
discern the chosen from the rejected. In reality, the gain from training here should saturate at some
point to show that there is still some unsystematic noise that the model is not overfitting.

Our results validate DPO’s utility for NL2SQL, and highlight the usefulness of multi-objective
approaches. Small evaluation set sizes limited statistical confidence, especially on BIRD. Our binary
metric (execution match) may not fully capture partial correctness or improvements in reasoning.
Future directions include enhancing preference pair generation (e.g., using ReAct-style feedback)
and building on alternative approaches to multi-objective scoring.

Note that for multi-objective optimization, the score disagreed with the “chosen > rejected” assertion
13% of the time. In other words, chosen had a higher score than rejected 87% of the time. This
points to one of two (among many) possible outcomes: The score function and the DPO dataset are
both robust. The DPO dataset has too much of a difference between preferred and rejected, such that
the score is not resulting in enough information gain. The rules in the score function could also be
improved. They were generated by leveraging generative AI to indicate common problems in SQL
queries, but anecdotally, there seems to be minimal forgiveness for almost-correct solutions, which
likely influenced the quality of the score.

7 Conclusion

We find that multi-objective DPO in particular can significantly enhance LLM performance on
NL2SQL tasks. Single-objective DPO generated from preference pairs consisting of an incorrect
fine-tuned model output and a gold label are also effective, although generating preferred outputs
only by including gold CoT traces falls short. These results emphasize the value of robust approaches
to generating synthetic preference data and augmenting it with richer multi-objective preference
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optimization, as well as providing a foundation for further general-purpose DPO improvements across
other domains.

8 Team Contributions

• Elizabeth Sinyavin: Preference dataset construction and experimentation, DPO algorithm
implementation, evaluation

• Bora Oztekin: DPO algorithm implementation, multi-objective optimization
• Sajid Farook: Drafted most final report, and poster content, contributed to developing

ideas.

Changes from Proposal We decided not to do supervised fine-tuning ourselves, and instead used
the OmniSQL model as our base model, which has already been finetuned on our synthetic training
dataset. Given limited compute resources and existing checkpoints, we wanted to focus our attention
on the RL-relevant experimentation given the specialization of the course.
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